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Abstract—Jatropha curcas L. and Ricinus communis L. 

belong to Euphorbiaceae and considered as important 

alternative biofuel. Somatic hybridization between J. 

curcas L. and R. communis L. was proposed to solve 

low genetic variability of J. curcas L. The intergeneric 

hybrid will provide a novel variety which perform as 

an annual crop and bear fruits to ease harvesting for 

commercial production. Protoplast fusion between J. 

curcas L. and R. communis L. to create intergeneric 

hybrid was attempted via PEG-mediated method. 

Mesophyll protoplasts of J. curcas L. and calli 

protoplasts of R. communis L. were used in this study. 

Concentration and molecular weight of PEG, fusion 

period, microfusion and macrofusion method were 

optimized. The highest (66%) viability of 

heterokaryon was obtained from using 30% PEG 

(MW6000) assisted with macrofusion method for 10 

minutes.  
 

Index Terms—Jatropha curcas L., Ricinus communis L. 

protoplast fusion, PEG-mediated method. 

 

I. INTRODUCTION 

Physic nut (Jatropha curcas L.) and castor bean 

(Ricinus communis L.) are important non-edible oilseed 

crops in the Euphorbiaceae. J. curcas L. seed is 

alternative source of biofuel; while R. communis L. is an 

important source of medicinal oil and has numerous 

benefits to humanity [1]. Thus, both species are 

considered potential alternative sources for biofuel 

production augment world energy crisis, providing 

opportunities for current breeding programs in genetic 

enhancement of the oilseed crops [1], [2]. Intergeneric 

somatic hybridization between J. curcas L. and R. 

communis L., using protoplast fusion can be an 

alternative way to introgress desirable characters of 

related family in obtaining superior genotype and 

converting an underutilized wild type to a commercially 
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viable alternative source of biofuel, thereby increasing 

new valuable annual crops in support for the growing 

plant breeding program in Thailand. The polyethylene 

glycol (PEG)-mediated method is one of the most 

successful techniques for protoplast fusion that attempts 

to enhance agglutination to produce intergeneric somatic 

hybrids. PEG-mediated method has been used extensively 

for its simplicity, efficiency, economical, and does not 

seem to interfere with protoplast viability [3], [4]. 

However, protoplast fusion requires the establishment of 

an efficient system of protoplast isolation followed by 

cell division and plant regeneration [5]. There are no 

reports to date describing the fusion of protoplast of         

J. curcas L. and R. communis L. Therefore the 

development of techniques for protoplast fusion between 

J. curcas L. and R. communis L. by PEG-mediated was 

investigated to find the optimum condition for protoplast 

fusion of the intergeneric somatic hybridization of the 

two species.  

II. MATERIALS AND METHODS 

A. Plant Materials 

In vitro leaves of J. curcas L. were precultured for 2 

days on modified MS medium [6] supplemented with 100 

mg/l
 
casein hydrolysate, 200 mg/l L-glutamine as an 

organic nitrogen source, 0.5 mg/l IBA, 1.0 mg/l BA, and 

8.0 mg/l CuSO4; while in vitro leaves of R. communis L. 

were precultured on modified MS medium supplemented 

with 0.25 mg/l N-phenyl-N'-1,2,3-thidiazol-5-yl urea 

(TDZ), 4.5 mg/l BA, 3% (w/v) sucrose, and 0.7% (w/v) 

agar, adjusted the pH to 5.7. Compact calli of R. 

communis L. were derived from in vitro leaves growing 

on modified MS medium supplemented with 0.6 mg/l of 

TDZ, 0.05 mg/l of napthalene acetic acid (NAA), 1 mg/l 

of BA, 3% (w/v) sucrose, and 0.7% (w/v) agar, adjusted 

to pH 5.7, and cultured for 6 weeks.  

B. Protoplast Isolation and Purification 

Protoplasts were isolated from J. curcas L. and R. 

communis L. as described [7]. Protoplasts were freshly 

prepared prior to fusion experiment.  
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C. Protoplast Fusion 

The different fusion conditions were evaluated on the 

basis of four parameters: the PEG molecular weight, 

compositions of fusion solution, fusion time, and fusion 

methods. The fusion process was observed 

microscopically to estimate the percentage of binary and 

multi fusions, heterokaryons and cell viability after 12-24 

h of fusion.  

Effect of fusion solution and fusion time—Equal 

volumes of purified mesophyll protoplasts (green) of       

J. curcas L. and calli protoplasts (colorless) of R. 

communis L. were mixed in the ratio of 1:1 (v/v) density 

were adjusted to 1x10
5
 protoplasts/ml, and resuspended 

in CPW13M solution [8]. 100 µl per drop of protoplast 

suspension was transferred into each microcentrifuge 

tube, centrifuged at 750 rpm, 10 °C for 25 min., and 

slowly removed 90 µl of CPW13M solution with a 

Pasteur pipette. 100 µl of fusion solution (Table I) was 

gently added immediately to each microcentrifuge tube 

and incubated for 15, 20 and 25 min. Then the fusion 

solution was carefully and slowly removed with a Pasteur 

pipette and immediately replaced with 400 µl of High 

pH/Ca
2+

 (high pH/high Ca
2+

) solution (Table I) and 

mixed gently (1:1, v/v) before adding to each 

microcentrifuge tube. After 10 min, fusion solution and 

high pH/Ca
2+

 solution were centrifuged at 750 rpm, 10 °C 

for 5 min and slowly removed with pasture pipette, and 

immediately replaced with 1 ml of CPW13M (pH 5.8). 

This step was repeated more than 3 times, with great care 

to avoid removing protoplasts. 
 

TABLE I.  COMPOSITION OF FUSION SOLUTION AND HIGH PH/CA
2+

 SOLUTION (PH 10.5) 

Composition 
Fusion solution High pH/Ca2+ 

(pH 10.5) 1 2 3 4 5 

PEG MW 6000 (% 
w/v) 

Sucrose (% w/v) 

CaCl2.2H2O (mM) 
KH2PO4.H2O (mM) 

Mannitol (mM) 

Glycine (mM) 

 
 

5 

 
500 

3.753 

15 
 

60 

 
90 

25 

30 
4 

10 

 
 

 

40 
 

10.5 

0.7 

50 
 

0.5 

 
500 

 
 

100 

 
800 

100 

Reference [9] [10] [9] [11] [12]  
 

Effect of molecular weight of PEG—To compare 

different molecular weight (MW) of 30% (w/v) PEG 

between MW6000 and MW8000 along with 4% (w/v) 

sucrose and 10 mM CaCl2.2H2O modified from Ref. [9], 

equal volumes of purified mesophyll protoplasts of J. 

curcas L. and calli protoplasts of R. communis L., at 

density adjusted to 1x10
5
 protoplasts/ ml were mixed in 

the ratio of 1:1 (v/v). Protoplast suspension (100 µl) was 

transferred into each new microcentrifuge tubes and 

mixed with the fusion solution (MW6000 and MW8000) 

and centrifuged at 750 rpm, 10 °C for 25 min. 400 µl of 

high pH/Ca
2+

 solution was added to each microcentrifuge 

tubes. After 10 min, fusion solution and high pH/Ca
2+

 

solution were centrifuged at 750 rpm, 10 °C for 5 min, the 

method was performed as described in former experiment.  

Effect of fusion methods—(1) Macromethod: After 

isolation, Equal volumes of purified mesophyll 

protoplasts (green) of J. curcas L. and calli protoplasts 

(colorless) of R. communis L. at density 1x10
5
 

protoplasts/ml were mixed in the ratio of 1:1 (v/v). 

Protoplast suspension (100 µl) was transferred into new 

microcentrifuge tubes and mixed with the fusion solution 

3 containing 30% (w/v) PEG-MW6000 along with 4% 

(w/v) sucrose and 10 mM CaCl2.2H2O and induced 

fusion by centrifugation at 750 rpm, 10 °C for different 

times (10, 15, 20, 25 and 30 min). After centrifugation, 

the mixture was carefully diluted with 400 µl (1:1, v/v) of 

high pH/Ca
2+

. After 10 min, fusion solution and high 

pH/Ca
2+

 solution were centrifuged at 750 rpm, 10 °C for 5 

min the method was performed as described in former 

experiment. (2) Micromethod: After isolation, Equal 

volumes of the two fusion partners (1:1, v/v), at density 

1x10
5
 protoplasts/ml were mixed in CPW13M. Protoplast 

suspension (100 µl) was pipetted in small droplets 

transferred into each 5.5 cm Pretri dish. After settling of 

protoplasts for at least 20 min (to allow accumulation of 

protoplasts in the center of the drops), 100 µl of fusion 

solution 3 containing 30% (w/v) PEG-MW6000 along 

with 4% (w/v) sucrose and 10 mM CaCl2.2H2O was 

slowly added on top of the protoplast mixture and 

allowed to stand at room temperature for different time 

(10, 15, 20, 25 and 30 min). After incubation time, the 

mixture was carefully diluted with 400 µl of high 

pH/Ca
2+

 solution. After 10 min, the mixture of fusion 

solution and high pH/Ca
2+

 solution were carefully and 

slowly removed with Pasteur pipette, and immediately 

replaced with 1 ml of CPW13M (pH 5.8). The method 

was performed as described in former experiment. About 

12-24 h after culture in CPW13M (pH 5.8) estimated 

percentage of binary and multi fusions, heterokaryons 

formation and cell viability were determined by 

observing under the compound microscope (Olympus 

CX31, USA). 

D. Statistical Analysis 

All data were assessed by one way analysis of variance 

(ANOVA), and the means were compared by the 

Duncan’s multiple range test at 95% interval of 

confidence (P<0.05). Each statistical analysis was carried 

out using SPSS 17.0 software (SPSS, Chicago. IT. USA). 

III. RESULTS 

A. Protoplast Preparation 
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Protoplasts of J. curcas L. were released from in vitro 

leaves after incubation for 7 h with combination of 2% 

(w/v) cellulase onozuka R10, and 0.2% (w/v) pectolyase 

Y23 dissolved in 0.7 M mannitol, 2.5 mM CaCl2.2H2O 

and 5 mM MES buffer (pH 5.6), while protoplasts of R. 

communis L. were released from callus after incubation 

for 7 h with combination of 2% (w/v) cellulase onozuka 

R10, and 2% (w/v) pectinase dissolved in 0.5 M mannitol, 

2.5 mM CaCl2.2H2O and 5 mM MES buffer (pH 5.6). 

After purification, the preparation frequency of 

protoplasts of J. curcas L. and R. communis L. came to 

the maximum 5.45  10
6 
and 1.77  10

5 
protoplasts/gFW, 

respectively. The freshly protoplasts of J. curcas L. were 

green, spherically shaped, and heterogeneous in size 

(range: 11-45 µm, Fig. 1C). On the other hand, the callus 

protoplasts of R. communis L. were translucent, colorless, 

and vary in sizes (range: 36-97 µm, Fig. 1D). This 

experiment demonstrated that the isolated protoplasts of J. 

curcas L. and R. communis L. gave viability 77.03 and 

82.54 % of protoplasts, respectively.   

B. Effect of Different Fusion Solution and Fusion Times 

on Protoplast Fusion 

Different combinations of five fusion solutions 

behaved differently in their responses to varying PEG, 

sucrose, CaCl2.2H2O, KH2PO4.H2O, mannitol and glycine 

concentration. After the treatment, most of the cells 

exhibited binary fusion (Fig. 1E, G), while multi fusion 

was rarely observed in some case as three-five protoplasts 

were also merged (Fig. 1F). Homokaryons products could 

be not identified due to their monochromatic nature (Fig. 

1E). While, heterokaryons products could be easily 

identified by counting the protoplasts present in both 

green chloroplasts of mesophyll-derived protoplasts 

partner from J. curcas L. and colorless chloroplasts of 

calli-derived protoplasts partner from R. communis L. 

(Fig. 1G). In our study, the highest binary fusion rate 

(6.42±1.44%) was achieved with Fusion solution 3 

containing 30% (w/v) PEG-MW6000 supplement with 

4% (w/v) sucrose and 10 mM CaCl2.2H2O and incubated 

in high pH/Ca
2+

 solution (pH 10.5). Viability of 

protoplast mixture was measured after 24 h of fusion 

(Table II). The highest viability rate was obtained 

(80.07±2.97%) when protoplasts were treated with 

Fusion solution 4 containing 40% (w/v) PEG-MW6000 

supplement with 10.5 mM CaCl2.2H2O and 0.7 mM 

KH2PO4.H2O, centrifuged at 750 rpm, 10 °C for 25 min . 

In this study, Fusion solution 3 containing 30% (w/v) 

PEG-MW6000 supplemented with 4% (w/v) sucrose and 

10 mM CaCl2.2H2O and incubated in high pH/Ca
2+

 

solution (pH 10.5) can be considered the optimum 

combination to enhance protoplast fusion production 

between J. curcas L. and R. communis L. 

C. Effect of Molecular Weight of PEG on Protoplast 

Fusion 

In this study, protoplast fusion between J. curcas L. 

and R. communis L. used different molecular weight 

between PEG -MW 6000 and MW 8000 at concentration 

of 30% (w/v) supplemented with 4% (w/v) sucrose and 

10 mM CaCl2.2H2O and high pH/Ca
2+

 solution (pH 10.5) 

incubated and centrifuged at 750 rpm, 10 °C for 25 min 

modified from Ref. [9]. The effects of PEG-MW6000 and 

PEG-MW8000 on protoplast agglutination (tight 

adhesions between two or more protoplasts) was 

observed using hemocytometer. PEG-MW6000 was 

highly efficient in terms fused protoplast with about 

6.42±1.44% of binary fusion (Table III) than PEG-

MW8000, which only produced 3.13±0.26% successful 

fusion. In addition, PEG-MW6000 seemed to be more 

viable than PEG-MW8000 with viability rate of about 

56.39±2.01% and 55.95±2.29%, respectively. Therefore, 

PEG-MW6000 was selected on protoplast fusion between 

J. curcas L. and R. communis L.  

D. Effect of Protoplast Fusion Method and Time 

Duration  

The efficiency of protoplast fusion between J. curcas L. 

and R. communis L. using PEG- mediated methods 

(macromethod and micromethod) were investigated. As 

the protoplast membrane fused and connections were 

formed between the two cytoplasms (Fig. 1E,G), it was 

observed that fusion methods has a significant effect on 

the frequency of binary fusion, multi fusion, 

heterokaryons and their viability (Table III). The 

percentage of binary fusion of macromethod was higher 

than micromethod (P<0.05) (Table III). However, 

micromethod resulted more viable fusion products than 

macromethod (P<0.05) due to the absence of 

centrifugation, which consistently caused damage to the 

membranes of the protoplasts [9]. Therefore, the longer 

time to produce protoplast fusion by macromethod led to 

serious protoplast damage more than short time. This 

study revealed that PEG-mediated by macromethod using 

30% PEG-MW6000 supplemented with 4% (w/v) sucrose 

and 10 mM CaCl2.2H2O and high pH/Ca
2+

 solution (pH 

10.5) and centrifuged at 750 rpm, 10 °C for 10 min was 

the most efficient for fusing the protoplasts of J. curcas L. 

and R. communis L. Our investigation demonstrated that 

protoplast fusion between J. curcas L. and R. communis 

L. using macromethod at short time enhanced the 

frequency rate of binary fusion (7.62±5.19%), multi 

fusion (0.81±1.15%), heterokaryons (2.42±3.42%) and 

has high viability (66.89±17.04%). On the other hand, 

using micromethod at prolonged period produced high 

frequency of binary fusion but has lower viability. 

IV. DISCUSSION 

Two protoplast fusion procedures have been used to 

obtain somatic hybrids produced to date-chemical and 

electrical fusion [13]. The protoplast using polyethylene 

glycol (PEG) requires the careful control of several 

important parameters, including the fusion media as well 

as the molecular weight and concentration of PEG as well 

as the duration of exposure and temperature [14], [15]. 

PEG having a molecular weight from 400 to 6000 was 

found to be active in fusion, whereas PEG 200 and 20000 

was almost inactive. However, actual fusion occurs upon 

dilution of the PEG with a high pH and high Ca
2+

 eluting 

International Journal of Life Sciences Biotechnology and Pharma Research Vol. 4, No. 1, January 2015

52©2015 Int. J. Life Sci. Biotech. Pharm. Res.



medium, which has been shown to neutralize the normal 

surface charge thus allowing the membranes of 

agglutinated protoplasts to come in intimate contact [16]. 

 

TABLE II.  EFFECTS OF DIFFERENT FUSION SOLUTION AND FUSION TIMES ON PROTOPLAST FUSION BETWEEN J. CURCAS L. AND R. COMMUNIS L. 

Fusion solution Fusion time (min) 
Binary fusion rate 

(%) 
Multi fusion rate 

(%) 
Viability 

(%) 

1 15 

20 
25 

0.63±0.11f 

2.12±0.56cdef 

1.57±1.85ef 

0.00±0.00b 

0.00±0.00b 
0.40±0.69ab 

61.66±2.67c 

60.93±1.54c 

26.46±1.40g 

2 15 

20 

25 

0.76±0.35f 

0.82±0.03f 

3.63±0.17bc 

0.00±0.00b 

0.00±0.00b  

0.60±0.58b 

74.48±1.84b 

49.03±2.43e 

62.72±1.66c 

3 15 

20 

25 

0.68±0.59f 

1.84±0.28def 

6.42±1.44a 

0.00±0.00b 

0.00±0.00b 

0.00±0.00b 

62.30±2.17c 

61.92±2.00c 

56.38±2.01d 

4 15 

20 

25 

1.19±0.03ef 

2.88±0.75bcde 

4.43±1.75b 

0.00±0.00b 

0.19±0.33ab 

0.00±0.00b 

80.07±2.97a 

60.81±2.61c 

3.98±0.43h 

5 15 
20 

25 

0.99±0.45f 

3.44±0.67bcd 

2.76±1.35cde 

0.00±0.00b 
0.34±0.58ab 

0.00±0.00b 

36.95±1.48f 

39.91±3.38f 

37.41±2.30f 

Data are means of three independent treatments. Differences between means were assessed using the Duncan’s multiple range test; means with the 
same superscript letter are not significantly different at 95% interval of confidence (P<0.05). 

TABLE III.  EFFECT OF DIFFERENT MOLECULAR WEIGHT OF PEG ON PROTOPLAST FUSION BETWEEN J. CURCAS L. AND R. COMMUNIS L. 

PEG MW 
Protoplast fusion frequency (%) Viability 

(%) Binary fusion Multi fusion 

6000 

8000 

6.42±1.44a 

3.13±0.26b 

0.00±0.00 

0.00±0.00 

56.39±2.01a 

55.95±2.29a 

Data are means of three independent treatments. Differences between means were assessed using the Duncan’s multiple range test; means with the 

same superscript letter are not significantly different at 95% interval of confidence (P<0.05). 

TABLE IV.  EFFECT OF FUSION METHODS AND FUSION TIME ON PROTOPLAST FUSION FREQUENCY (%) AND VIABILITY (%) 

Fusion method 
Fusion time  

(min) 

Protoplast fusion frequency (%) 
Viability (%) 

Binary fusion Multifusion Heterokaryons 

Macromethod 10 7.62±5.19a 0.81±1.15a 2.42±3.42a 66.89±17.04abcd 

 15 4.56±0.07ab 0.51±0.74a 1.19±0.25a 71.85±1.61abc 

 20 3.91±2.56ab 0.00±0.00a 0.00±0.00a 66.66±7.39abcd 

 25 3.32±1.81ab 0.00±0.00a 0.58±0.81a 64.40±1.59bcd 

 30 1.55±0.69b 0.00±0.00a 0.00±0.00a 60.40±3.53cd 

Micromethod 10 1.48±0.13b 0.00±0.00a 0.00±0.00a 77.87±1.84ab 

 15 5.73±2.31ab 0.00±0.00a 1.25±0.32a 81.83±5.50a 
 20 5.82±0.90ab 0.00±0.00a 0.97±0.15a 80.96±5.00a 

 25 3.34±0.49ab 0.00±0.00a 0.00±0.00a 66.67±0.52abcd 

 30 6.86±1.37a 0.00±0.00a 1.36±0.54a 54.79±1.22d 

Data are means of three independent treatments. Differences between means were assessed using the Duncan’s multiple range test; means with the 

same superscript letter are not significantly different at 95% interval of confidence (P<0.05). 

 

Figure 1.  Protoplast fusion between J. curcas L. and R. communis L. protoplasts induced by 30% (w/v)  PEG-MW 6000 supplemented with 4% 
(w/v) sucrose and 10 mM CaCl2.2H2O, isolated protoplasts of in vitro leaves of J. curcas L. and isolated protoplast of callus of R. communis L. (A), 

purified protoplast of in vitro leaves of J. curcas L. and purified protoplast of callus of R. communis L. (B), healthy protoplast isolated from in vitro 
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leaves of J. curcas L. (C), healthy protoplast isolated from callus of R. communis L. (D), Binary fusion (E), Multifusion (F) and heterokaryons 
between  J. curcas L. and R. communis L. (G). 

 Each step in the fusion process should be evaluated 

not only for yield of fusion products, but also for its 

overall effect on cell viability [14]. In this study, viability 

of fused protoplast reached 26.46-80.07 %. The prolong 

PEG application of more than 30 min led to serious 

protoplast damage [17]. The use of higher concentration 

of PEG or higher molecular weight PEG is known to 

cause tighter adhesion of the protoplast. However, it also 

limits the recovery of viable fused cells. In this study, 

50% Fusion solution promotes fusion, but it caused 

decreased viable fusion products. Moreover, is also 

important to identify the suitable molecular weight of 

PEG and exposure time can influence the yield of viable 

protoplast [15].  

Ref. [15] reported that using PEG in prolonged period 

reduced the viability of protoplasts and cell wall 

regeneration, cell division and production of 

microcolonies. These results conformed to the previously 

published work of  using 30% (w/v) PEG incubated to 30 

min to induce fused protoplast to die [17]. One popular 

modification of chemical fusion protocols is the use of 

low-speed centrifugation during the aggregation and 

fusion stages. The increased centrifugal forces created by 

the centrifugation seem to promote tighter adhesion and 

promote higher yields of cells [14]. Similarly, we found 

that binary fusion frequency of macromethod was highly 

efficient than micromethod. In some case, a novel method 

known as electro-chemical protoplast fusion was 

developed which uses a low concentration of PEG 

induced protoplast aggregation and CD pulse to promote 

membrane fusion [18]. Meanwhile, agglutination of 

protoplasts treated with PEG could be highly dependent 

on the temperature of media in which the cells are 

suspended in, as well as the concentration and duration of 

the PEG treatment [14]. Following treatment with PEG, 

the mesophyll-derived protoplast continued to divide, 

resulting in cell colonies, whereas the calli-derived 

protoplasts died shortly after treatment. Genotype 

variation played a significant role and the use of a large 

number of different materials might be a needed to 

achieve not only regeneration from fused cells but also 

for chromosome elimination in somatic hybridization 

between remote species such as Arabidopsis thaliana L. 

and Bupleurum scorzonerifolium Willd. [19]. In essence, 

the observed slow division or slow growth of hybrids 

cells is attributed to loss of chromosomes, chromosome 

fragmentations or abnormal chromosome numbers [20]. 

In some cases, isolated protoplasts had completely lost 

the ability to regenerate the cell walls, divide and 

proliferate [21]. Ref. [22] reported that in the event of 

over-digestion by enzymes, the cultured protoplasts will 

not divide and cytoplasm may collapse within the cells. 

Therefore, developing an isolation procedure yielding to 

more viable and intact protoplasts may be necessary for 

protoplast division in protoplast culture step. Thus, the 

possible stimulatory potential Ca
2+

 ions to promote fiber 

formation of cell wall component [23], [24] and increased 

calcium concentration may be important for membrane 

stability [25]. However, high Ca
2+

 ions concentration at 

900 mg/L CaCl2 in protoplast culture medium (normal 

concentrations being 400 mg/l in MS medium) was 

effective for increasing protoplast division of Nicotiana 

alata [26] and the plating efficiency of Azuki bean leaf 

mesophyll protoplast [27]. Though the highest number of 

the Initial Plating Efficiency (IPE) was obtained in 

protoplast culture medium (PCM-6) but protoplasts did 

not divide and turned brown after 21 days of culture. 

Isolated protoplasts are usually cultured in either liquid or 

semisolid agar media plates. Ref. [25] reported that 

protoplasts are sometimes allowed to regenerated cell 

wall in liquid culture before they are transferred to agar 

media. The frequency of cell division and colony 

formation from protoplasts were each species despite the 

optimization of various nutritional factors [28]. 

Increasing CaCl2.2H2O and mannitol concentration to 

prevent osmotic pressure and decreasing of PEG 

concentration can increase viability of fused protoplast. 

However, despite the high efficiency of increase PEG-

MW6000 concentration for inducing binary fusion 

frequency it can result to low viable fusion products and 

can lead to perturbations of mitotic activities [12]. Our 

investigation demonstrated that Fusion solution without 

PEG (Fusion solution 1) has increased the binary fusion 

frequency but low viability (Table IV). The PEG 

molecule chain act as a molecule bridge between the 

surface of adjacent protoplasts and causes to adhere to 

one another while high pH/Ca
2+

 ion treatment has been 

shown to neutralize the normal surface charge causing 

agglutinated protoplasts to come in intimate contact [25], 

[16]. In addition, performing protoplast fusion by PEG-

induced method within 1-2 h after protoplast isolation 

will allow cell wall regeneration and may hinder fusion 

[4], [29]. Protoplasts treated with PEG produced higher 

frequency of binary fusion than those fused electrically 

but has a lower rate of cell divisions [12]. Ref. [25] 

reported that the breakdown of cell wall during protoplast 

isolation and cell wall degradation would permit dilation 

of plasmodesmata leading to induce spontaneous fusion. 

Supporting the concept that sucrose plays an important 

role in membrane protection [30]. Ca
2+

 ion can become a 

fusagen by binding together the hydrogen phosphoric 

group on two different protoplasts though mutual 

attraction between the negative hydrogen phosphate 

group and the positive Ca
2+

 ion [31]. However, increased 

CaCl2 concentration shown beyond a certain level the 

number of fusing protoplast. 

In conclusion, this study is the first report on protoplast 

fusion of J. curcas L. and R. communis L. Although 

microcolony formation and plant regeneration was not 

achieved, our results provided a realistic basis for future 

work on the development of a protoplast to plant 

regeneration system. Protoplast culture of J. curcas L. 

and R. communis L. was cultured in liquid medium for 3-

7 days for cell division followed by transferring to 

agarose droplet in the same medium for 42 days to induce 

microcolony. The optimum fusion solution that would 
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offer best compromise between high percentage of binary 

fusion and heterokaryons would be PEG-mediated by 

macrofusion method with 30% PEG-MW6000 

supplement with 4% (w/v) sucrose and 10 mM 

CaCl2.2H2O, and incubated in high pH/Ca
2+

 solution (pH 

10.5) and centrifuged at 750 rpm, 10 °C for 10 min. 

Further studies is recommended to improve plant 

regeneration by developing suitable protoplast culture 

and regeneration medium for somatic hybrids between J. 

curcas L. and R. communis L. 
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