ORIGINAL RESEARCH

Assessment of Levobupivacaine Versus Dexmedetomidine for Infraumbilical Surgeries Under Spinal Anesthesia: A Comparative Analysis of Hemodynamic Changes, Analgesic Efficacy, and Safety Profile

¹Dr. Anandini Rajput, ²Dr. Arun C. Pawar, ³Dr. Manoj Kumar Garg

¹Associate Professor, Department of Anesthesiology, Dr. S.S. Tantia Medical College, Hospital and Research Centre, Sri Ganganagar, Rajasthan, India

²Associate Professor, Department of Ophthalmology, Dr. S.S. Tantia Medical College, Hospital and Research Centre, Sri Ganganagar, Rajasthan, India

³Associate Professor, Department of General Surgery, Dr. S.S. Tantia Medical College, Hospital and Research Centre, Sri Ganganagar, Rajasthan, India

Corresponding Author

Dr. Manoj Kumar Garg

Associate Professor, Department of General Surgery, Dr. S.S. Tantia Medical College, Hospital and Research Centre, Sri Ganganagar, Rajasthan, India

Received: 10 July, 2024 Accepted: 22 August, 2024 Published: 20 September, 2024

ABSTRACT

Introduction: Due to decreased cardiovascular and central nervous system toxicity, levobupivacaine is a good alternative for spinal anesthesia. Dexmedetomidine when used intrathecally is associated with prolonged motor and sensory block, hemodynamic stability, and less requirement of rescue analgesia in 24 h. **Materials and Methods:** We assumed that sevoflurane will provide clinically acceptable conditions for endotracheal intubation comparable to propofol-suxamethonium in children. All patients received diazepam 0.2 mg/kg orally, the night before surgery. The patients were preloaded with Lactated Ringer's solution 15 mL/kg. They were monitored with automated noninvasive blood pressure, pulse oximetry, and electrocardiogram. **Results:** In Group LD, increase in VAS was observed at 210 min and the first dose of rescue analgesia was given at 5th h postoperatively. The second dose of recue analgesia was given at 12th h and the third dose was given at 21st h. Postoperative VAS scores at different time intervals were significantly lower in Group LD than Group L, thus indicating superior analgesia. The time of request of the first dose of rescue analgesia was delayed in Group LD as it was demanded at 309.93 ± 23.19 min and in Group L was at 168.30 ± 12.32 min. The difference in the two groups was highly significant (P < 0.001). **Conclusion:** Sevoflurane provides clinically acceptable intubating conditions and can be a suitable alternative to propofol-suxamethonium for endotracheal intubation in children.

Keywords: Levobupivacaine, Levobupivacaine, Dexmedetomidine, Infraumbilical Surgeries, Spinal Anesthesia

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

INTRODUCTION

Spinal anesthesia remains a widely preferred technique for infraumbilical surgeries due to its rapid onset, profound sensory and motor blockade, and cost-effectiveness. Among the commonly used local anesthetics, **Levobupivacaine**, a pure S-enantiomer of bupivacaine, has gained popularity for its favorable safety profile, reduced cardiotoxicity, and reliable sensory-motor blockade.

In recent years, the quest for enhancing the quality and duration of spinal anesthesia while minimizing side effects has led to the use of various adjuvants. **Dexmedetomidine**, a highly selective α 2-adrenergic agonist, has emerged as an effective spinal adjuvant due to its sedative, analgesic, and sympatholytic properties. When added to local anesthetics, dexmedetomidine has been shown to prolong sensory and motor block, improve intraoperative

hemodynamic stability, and provide superior postoperative analgesia without significant respiratory depression.

As we are moving ahead in time, there is renewed interest in the use of regional anesthesia techniques for a number of common surgeries replacing the general anesthesia.[1] Regional anesthesia has many benefits over general anesthesia as it eliminates the pain both intraoperatively and postoperatively, provides excellent muscle relaxation, and reduces intraoperative bleeding.[2] Regional anesthesia techniques are also superior to systemic opioid agents with regard to analgesia profile and adverse effects.[3] Spinal anesthesia is the most commonly used technique due to its unmatchable reliability, simplicity, and cost-effectiveness. It provides a fast and effective onset of sensory and motor block, excellent muscle relaxation, and prolonged postoperative analgesia.[4] Due to decreased cardiovascular and central nervous system toxicity, levobupivacaine is a good alternative.[5] This could also have led to reduction in the proportion of cases of inhalation agent-related cardiovascular depression resulting in cardiac arrest in the United States.[6]The introduction of sevoflurane into clinical anaesthetic practice started in Japan in May 1990, and by 1993, one million patients had received it.[7] Since then, its use has superseded the use of halothane for inhalational induction and intubation in paediatric anaesthesia. Several studies have compared intubation in children without the use of muscle relaxants. These studies employed sevoflurane with or without nitrous oxide in oxygen. Others employed use of sevoflurane with opioids and also in combination with propofol and benzodiazepines such as midazolam.[8-11] these combinations showed comparable All conditions with the traditional use of suxamethonium which is thought to provide the optimal condition for tracheal intubation.[12-15]

The evaluation of hemodynamic changes is particularly crucial in spinal anesthesia, as sympathetic blockade can predispose patients to hypotension and bradycardia. Balancing adequate anesthesia with minimal cardiovascular disturbance is essential, especially in vulnerable patients. Moreover, assessing the duration and quality of postoperative analgesia is vital for improving patient comfort, reducing opioid consumption, and enhancing recovery outcomes.

This study aims to compare levobupivacaine alone with levobupivacaine combined with dexmedetomidine in patients undergoing infraumbilical surgeries under spinal anesthesia. The comparison focuses on four key parameters: hemodynamic changes, duration and quality of postoperative analgesia, and the incidence of side effects and complications. The findings of this study are expected to contribute valuable insights toward optimizing spinal anesthesia protocols for enhanced perioperative safety and analgesia.

MATERIALS AND METHODS

Inclusion criteria included ASA I or II and elective procedures lasting <90 min. The exclusion criteria were ASA III or IV, anticipated difficult airway, known allergy to study drugs and those patients who could not be intubated after two attempts at laryngoscopy. Regarding sample size calculation, Blair *et al.*[5] reported that the excellent intubating conditions which occurred in 45% of patients were achieved with a combination of 8% sevoflurane and 60% nitrous oxide[5]. An acceptable intubation success rate of 80% was considered clinically significant in this study. We assumed that sevoflurane will provide clinically acceptable conditions for endotracheal intubation comparable to propofol-suxamethonium in children. All patients received diazepam 0.2 mg/kg orally, the night before surgery. The patients were preloaded with Lactated Ringer's solution 15 mL/kg. They were monitored with automated noninvasive blood pressure, pulse oximetry, and electrocardiogram. Oxygen was given at the rate of 5-6 L/min through a face mask. The anesthesiologist performing the technique recorded the intraoperative data and followed the patient postoperatively until discharged from post anesthesia care unit.Assessment of sensory block by the loss of sensation to pinprick of 22 gauge blunt hypodermic needle and motor block by modified Bromage score[10] was done every 2 min for first 10 min, then every 5 min up to 30 min, every 15 min up to 120 min, half-hourly up to 240 min, and hourly until 12 h of surgery. Continuous multi-parameter monitoring of respiratory rate, heart rate, noninvasive systolic and diastolic blood pressure, SpO2, and electrocardiogram was done for hemodynamic response. Readings were recorded preoperatively, then intraoperatively at 0, 3, and 5 min, then at an interval of every 5 min up to 30 min, every 15 min up to 120 min, half-hourly up to 180 min, hourly until 12 h, and thereafter 3 hourly till 24 h of surgery in both the groups. Bradycardia (defined as heart rate <60 bpm) was treated with injection atropine sulfate intravenously according to heart rate. Hypotension (defined as systolic blood pressure <20% less than base value) was treated with intravenous ephedrine intravenously as per required and additional Ringer's lactate solution. The operation was started when surgical anesthesia (up to the T10 sensory dermatome) has developed. In case of failed or partial neuraxial block, the patient was given general anesthesia and that patient was excluded from the study.

RESULTS

The mean age, sex, weight, ASA grading, duration of surgery, baseline parameters, and quality of surgical analgesia were comparable in the two groups as shown in Table 1.

Parameters	Group L	Group LD	Р	Significance				
Age (years)	42.9±14.4	42.64±14.71	0.865	NS				
Sex								
Male	23	25	0.43					
Female	17	15						
Weight distribution	67.29±9.31	68.68±9.42	0.546	NS				
ASA grading (%)								
Grade I	75	65	0.418					
Grade II	35	45						
Duration of surgery	58.45±6.61	58.03±7.14	0.745	NS				
Heart rate (/min)	83.11±6.20	83.61±8.92	0.778	NS				
Systolic blood pressure (mmHg)	129.01±5.9	125.50±13.04	0.146	NS				
Diastolic blood pressure (mmHg)	80.22±9.51	79.75±8.40	0.826	NS				
Saturation of peripheral oxygen (%)	98.68±0.61	99.55±0.68	0.833	NS				
Respiratory rate (/min) (mean±SD)	17.04±2.05	18.22±0.91	0.529	NS				

In Group LD, increase in VAS was observed at 210 min and the first dose of rescue analgesia was given at 5th h postoperatively. The second dose of recue analgesia was given at 12th h and the third dose was given at 21st h. Postoperative VAS scores at different time intervals were significantly lower in Group LD than Group L, thus indicating superior analgesia. The time of request of the first dose of rescue analgesia was delayed in Group LD as it was demanded at $309.93 \pm$ 23.19 min and in Group L was at 168.30 \pm 12.32 min. The difference in the two groups was highly significant (P < 0.001). A dose-dependent reduction in rescue analgesia requirements was noted in our study. Anumber of rescue analgesia doses were 3.60 \pm 0.49 in Group L, whereas 2.90 \pm 0.31 in Group LD and the difference was highly significant (P < 0.001) [Table 2].

 Table 2: Visual analog scale score and rescue analgesia in postoperative period

VAS score postoperative period (mean±SD)			Rescue analgesia (mean±SD)			
	Group L	Group LD	P Value	Group L	Group LD	
90 min	0.000 ± 0.0000	0.000 ± 0.0000	0.000 ± 0.0000	0.000 ± 0.0000	90 min	
105 min	0.101±0.3055	0.034 ± 0.1829	0.308	0.000 ± 0.0000	0.000 ± 0.0000	
120 min	0.803 ± 0.8471	0.435 ± 0.6792	0.070	0.000 ± 0.0000	0.000 ± 0.0000	
150 min	2.835 ± 2.5108	0.201 ± 0.4069	< 0.0001	0.236 ± 0.4305	0.000 ± 0.0000	
180 min	3.968 ± 2.6295	0.738 ± 0.7399	0.000	0.669 ± 0.4798	0.000 ± 0.0000	
210 min	3.436 ± 1.2785	2.464 ± 1.0086	0.002	0.135±0.3459	0.000 ± 0.0000	
4 h	2.269 ± 0.9075	3.106±0.8851	0.001	0.000 ± 0.0000	0.000 ± 0.0000	
5 h	0.000 ± 0.0000	3.339±1.0615	0.000	0.000 ± 0.0000	0.368±0.4903	
6 h	0.000 ± 0.0000	1.805 ± 1.3236	0.000	0.000 ± 0.0000	0.634 ± 0.4905	
7 h	0.035 ± 0.1829	0.868 ± 0.7764	0.000	0.000 ± 0.0000	0.000 ± 0.0000	
8 h	0.435 ± 0.7740	0.069 ± 0.2539	0.018	0.000 ± 0.0000	0.000 ± 0.0000	
9 h	3.403±2.1924	0.304 ± 0.5966	0.000	0.234 ± 0.4306	0.000 ± 0.0000	
10 h	2.636±1.6299	1.302 ± 0.9525	0.000	0.469 ± 0.5078	0.000 ± 0.0000	
11 h	1.105 ± 2.7295	2.706 ± 1.0559	0.000	0.202 ± 0.4069	0.306 ± 0.4668	
12 h	0.468 ± 2.2526	2.708 ± 1.8419	0.000	0.104 ± 0.3056	0.635 ± 0.4908	
15 h	2.336 ± 1.7489	0.536±1.1369	0.045	0.269 ± 0.4499	0.068 ± 0.2534	
18 h	2.606 ± 1.8864	2.834 ± 1.3669	0.589	0.634 ± 0.4905	0.506 ± 0.5089	
21 h	2.203 ± 1.4950	1.934 ± 2.0501	0.121	0.168 ± 0.3791	0.468 ± 0.5072	
24 h	4.001±1.4629	2.569 ± 1.6755	0.001	0.501 ± 0.5088	0.234±0.4305	

None of the patients of Group L had urinary retention while it was observed in only 3% of patients of Group LD and the difference was statistically nonsignificant. Other side effects such as pruritus, nausea, vomiting, headache, backache, local anesthetic toxicity, and respiratory depression were not recorded in any of the patients of both the groups.

DISCUSSION

In which induction time was longer revealed that total time to completion of intubation was 6.7 min (402 s) compared to this study which was 4.1 min (247.18 \pm 64.66 s). This longer time might be due to non-use of opioid analgesic and the use of TEC3 vaporiser (maximum sevoflurane that can be

Online ISSN: 2250-3137 PrintISSN:2977-0122

DOI: 10.69605/ijlbpr_13.9.2024.116

delivered was 7%) compared to TEC 7 used in this study which can deliver a maximum of 8%. In Blair et al.'s study and Sabapathy et al.'s study, [8,16] the success rate of acceptable clinical conditions for intubation using 8% sevoflurane in 60% nitrous oxide and oxygen was 87.5%. This study demonstrated a higher success rate where all the patients had acceptable clinical conditions for intubation. These studies used a fixed induction time for intubation (150 and 180 s, respectively); their high success rate despite short induction time could be attributed to overpressure technique in which the circuit was primed with sevoflurane. In this index study, conventional incremental dosing was used so that the children could tolerate the agent and prevent excitement associated with overpressure technique. The quality of tracheal intubation as determined by Helbo- Hansen score which is a score of 1-4 in each criterion and included laryngoscopy, vocal cords position. coughing and limb movements [See Appendix 1].[17] Excellent intubating conditions is a score of 3–4, good intubating conditions is a score of 5–6, while 9-12 is considered poor and 13-16 is bad. Excellent and good scores are considered as clinically acceptable, fair and poor scores are considered as clinically unacceptable. Blair et demonstrated that excellent intubating al.[8] conditions- which was a score of 1 in each criterionwere achieved in 70% of the propofol suxamethonium group in 45% of the sevoflurane group. In this present study, excellent intubating condition score was seen in 84.8% of patients in propofol-suxamethonium group and 45.5% in sevoflurane group. The excellent intubating conditions were similar in sevoflurane groups of both studies, but lower value of 70% obtained in their propofol-suxamethonium group could be attributed to the lack of analgesics used in their study whereas our patients were given intravenous fentanyl 2 g/kg before intubation in this study. Analgesics, especially opioids, have been shown to deepen anaesthesia and attenuate laryngopressor response. Excellent intubating conditions were seen in 100% of patients in a study by Kumar et al., [18] sevoflurane was used for induction and intubation following appoea at 4.5 min, and then, intravenous propofol 1 mg/kg was administered. Thereafter, laryngoscopy and intubation were done at 5.5 min.[18] This high success rate could be attributed to the use of sevoflurane till the patients were apnoeic at 4.5 min and use of propofol which causes apnoea in all their patients. Propofol also causes suppression of pharyngeal and laryngeal reflexes. Local anesthetic agents act by blocking sodium channels. The prolongation of effect may result from synergism between local anesthetic and 2-adrenoceptor agonist, while the prolongation of the motor block of spinal anesthetics may result from the binding of 2-adrenoceptor agonists to motor neurons in the dorsal horn.[19] Intrathecal 2-receptor agonists have been

found to have antinociceptive action for both somatic and visceral pain.[20] Fentanyl is a lipophilic µ-receptor agonist opioid. Intrathecally, fentanyl exerts its effect by combining with opioid receptors in the dorsal horn of spinal cord and [21] may have a supraspinal spread and action. The use of intrathecal clonidine has been studied with local anesthetics.[22] Studies using a combination of intrathecal dexmedetomidine and local anesthetics are lacking. In our study, the intrathecal dose of dexmedetomidine selected was based on previous animal studies.[23] A number of animal studies conducted using intrathecal dexmedetomidine at a dose range of 2.5–100 µg did not report any neurologic deficits with its use.[24-28] There was no statistical difference in change in the respiratory rate at different time intervals between the two groups (P > 0.05). This lack of respiratory depression with dexmedetomidine has also been demonstrated in studies done by Esmaoğlu et al.[29] and Basuni and Ezz.[30] Similarly, the mean heart rate at various intervals intraoperatively was found to be comparable in both the groups. The mean dose of atropine given in Group LD was 1.7 mg and in Group L was 1 mg. It was in accordance with a study conducted by Esmaoğlu et al.[29] Basuni and Ezz[30] observed bradycardia in 3.3% of patients in levobupivacaine and dexmedetomidine group, whereas it was in 13% of patients in our study. This can be explained by the fact that dose of levobupivacaine used in the study by Basuni and Ezz was 4 mg, whereas the dose was 15 mg in the present study. However, there was no statistically significant difference in the mean heart rate of both the groups during the perioperative and postoperative period (P >0.05) in both the studies. The addition of dexmedetomidine to levobupivacaine intrathecally does not cause significant hypotension as was observed in studies done by Esmaoğlu et al.[29] and Raval and Chaudhary.[31] The time to onset of sensory block was decreased with the addition of dexmedetomidine to levobupivacaine in the present study and the same was observed by Dizman et al.[32] and Sathitkarnmanee T et al.[33]

CONCLUSION

Sevoflurane provides clinically acceptable intubating conditions and can be a suitable alternative to propofol-suxamethonium for endotracheal intubation in children. Although sevoflurane is not as effective as propofolsuxamethonium for endotracheal intubation in children, it could be used as an alternative in elective procedures. We recommend the use of sevoflurane to facilitate intubation in elective procedures in children. It is concluded from our study that both the groups were effective in providing surgical anesthesia and hemodynamic stability, but Group LD was better than Group L as regards:

- Early onset of sensory and motor block
- Prolonged duration of sensory and motor block

- Longer duration of postoperative analgesia
- Lesser number of doses of rescue analgesia required.

REFERENCES

- 1. Elliot JM. Regional anaesthesia in trauma. Trauma 2001;3:161-74.
- Sinha R, Gurwara AK, Gupta SC. Laparoscopic cholecystectomy under spinal anesthesia: A study of 3492 patients. J Laparoendosc Adv Surg Tech A 2009;19:323-7.
- Merskey H, Fessard DG, Bonica JJ. Pain terms: A list with definition and terms of usage. J Pain 1979;6:249-52.
- Rodgers A, Walker N, Schug S, McKee A, Kehlet H, van Zundert A, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: Results from overview of randomised trials. BMJ 2000;321:1493.
- Brown DL, Carpenter RL, Thompson GE. Comparison of 0.5% ropivacaine and 0.5% bupivacaine for epidural anesthesia in patients undergoing lowerextremity surgery. Anesthesiology 1990;72:633-6.
- Sanjay M, Chanda Ramamothy B, Geiduschek JM. Anaesthesia-related cardiac arrest in children: Update from the pediatric preoperative cardiac arrest registry. Anesth Analg 2007;105:344-50.
- Rivenes SM, Lewin MB, Stayer SA. Cardiovascular effects of sevoflurane, halothane and fentanylmidazolam in children with congeni heart disease: An echocardiographic study. Anesthesiology 2001;94:223-9.
- Blair JM, Hill DA, Bali IM, Fee JP. Tracheal intubating conditions after induction with sevoflurane 8% in children. A comparison with two intravenous techniques. Anaesthesia 2000;55:774-8.
- Rajan S, Gotluru P, Andrews S, Paul J. Evaluation of endotracheal intubating conditions without the use of muscle relaxants following induction with propofol and sevoflurane in paediatric cleft lip and palate surgeries. J Anaesthesiol Clin Pharmacol 2014;30:360-5.
- Raghavendra TR, Yoganarasimha N, Radha MK, Mahdu R. A clinical study to compare the ease of intubation with combination of sevoflurane and propofol alone. Innov J Med Health Sci 2013;3:143-8.
- 11. Shaikh SI, Bellagali VP. Tracheal intubation without neuromuscular block in children. Indian J Anaesth 2010;54:29-34.
- Gupta A, Kaur R, Malhotra R, Kale S. Comparative evaluation of different doses of propofol preceded by fentanyl on intubating conditions and pressor response during tracheal intubation without muscle relaxants. Paediatr Anaesth 2006;16:399-405.
- Batra YK, Al Qatten AR, Ali SS, Qureshi MI, Kuriakose D, Migahed A. Assessment of tracheal intubating conditions in children using remifentanil and propofol without muscle relaxants. Paediatr Anaesth 2006;14:452-6.
- Agrawal S, Kumar A, Srivastava U. Intubation without muscle relaxant: Comparison of propofol-fentanyl or propofol-halothane anaesthesia in children. Afr J Anaesth Intensive Care 2011;11:7-11.
- Erhan E, Ugur G, Gunusen I, Alper I, Ozyar B. Propofolnot thiopental or etomidate with remifentanyl provides adequate intubating condition in the absence of neuromuscular blockage. Can J Anaesth 2003;50:108-15.
- 16. Sabapathy VA, Prabhu T, Srinivasa SM, Srinivasta P. Endotracheal intubation without muscle relaxants in

children undergoing cleft lip, palate and alveolar surgery. A comparative study of sevoflourane and propofol. J Clin Diagn Res 2011;5:1421-5.

- Helbo-Hanson S, Ravlo O, Trap-Anderson S. The influence of alfentanil on intubating conditions after priming with vecuronium. Acta Anaesth Scand 1988;32:41-4.
- Kumar N, Galante D, Shetty KB. Tracheal intubation in children using sevoflurane without muscle relaxant. A novel approach using apnea as clinical indicator. Paediatr Anaesth Crit Care J 2015;3:53-60.
- Harada Y, Nishioka K, Kitahata LM, Kishikawa K, Collins JG. Visceral antinociceptive effects of spinal clonidine combined with morphine, enkephalin, or U50, 488H. Anesthesiology 1995;83:344-52.
- Al-Ghanem SM, Massad IM, Al-Mustafa MM, Al-Zaben KR, Qudaisat IY, Qatawneh AM and Abu-Ali HM. Effect of Adding Dexmedetomidine versus Fentanyl to Intrathecal Bupivacaine on Spinal Block Characteristics in Gynecological Procedures: A Double Blind Controlled Study. Am J Appl Sci 2009;6:882-7.
- 21. Kalso E, Poyhia R, Rosenberg P. Spinal antinociception by dexmedetomidine, a highly selective □2-adrenergic agonist. Pharmacol Toxicol 1991;68:140-3.
- Elia N, Culebras X, Mazza C, Schiffer E, Tramèr MR. Clonidine as an adjuvant to intrathecal local anesthetics for surgery: Systematic review of randomized trials. Reg Anesth Pain Med 2008;33:159-67.
- Lo WC, Harris J, Clarke RW. Endogenous opioids support the spinal inhibitory action of an alpha 2adrenoceptor agonist in the decerebrated spinalised rabbit. Neurosci Lett 2003;340:95-8.
- 24. Talke P, Xu M, Paloheimo M, Kalso E. Effects of intrathecally administered dexmedetomidine, MPV-2426 and tizanidine on EMG in rats. Acta Anaesthesiol Scand 2003;47:347-54.
- Xu M, Kontinen VK, Kalso E. Effects of radolmidine, a novel alpha2- adrenergic agonist compared with dexmedetomidine in different pain models in the rat. Anesthesiology 2000;93:473-81.
- 26. Horvath G, Joo G, Dobos I, Klimscha W, Toth G, Benedek G. The synergistic antinociceptive interactions of endomorphin-1 with dexmedetomidine and/or S(+)-ketamine in rats. Anesth Analg 2001;93:1018-24.
- 27. Shimode N, Fukuoka T, Tanimoto M, Tashiro C, Tokunaga A, Noguchi K. The effects of dexmedetomidine and halothane on the Fos expression in the spinal dorsal horn using a rat postoperative pain model. Neurosci Lett 2003;343:45-8.
- Onttonen T, Pertovaara A. The mechanical antihyperalgesic effect of intrathecally administered MPV-2426, a novel alpha2- adrenoceptor agonist, in a rat model of postoperative pain. Anesthesiology 2000;92:1740-5.
- Esmaoğlu A, Türk S, Bayram A, Akın A, Uğur F, Ulgey A, et al. The effects of dexmedetomidine added to spinal levobupivacaine for transurethral endoscopic surgery. Balkan Med J 2013;30:186-90.
- Basuni AS, Ezz HA. Dexmedetomidine as supplement to low-dose levobupivacaine spinal anesthesia for knee arthroscopy. Egypt J Anaesth 2014;30:149-53.
- Raval DL, Chaudhary M. A clinical comparative study between dexmedetomidine v/s clonidine with bupivacaine intrathecally in major orthopaedic lower limb surgery. IOSR J Dent Med Sci 2014;2:77-83.
- 32. Dizman S, Turker G, Gurbet A, Mogol EB, Turkcan S, Karakuzu Z, et al. Comparison of two different doses of

intrathecal levobupivacaine for transurethral endoscopic surgery. Eurasian J Med 2011;43:103-8.

33. Sathitkarnmanee T, Thongrong C, Tribuddharat S, Bn MT, Bn KP, Bn RK, et al. A comparison of spinal isobaric levobupivacaine and racemic bupivacaine for lower abdominal and lower extremity surgery. J Med Assoc Thai 2011;94:716-20.